42 research outputs found

    On the Multiple Threshold Decoding of LDPC codes over GF(q)

    Full text link
    We consider the decoding of LDPC codes over GF(q) with the low-complexity majority algorithm from [1]. A modification of this algorithm with multiple thresholds is suggested. A lower estimate on the decoding radius realized by the new algorithm is derived. The estimate is shown to be better than the estimate for a single threshold majority decoder. At the same time the transition to multiple thresholds does not affect the order of complexity.Comment: 5 pages, submitted to ISIT 201

    On a Multiple-Access in a Vector Disjunctive Channel

    Full text link
    We address the problem of increasing the sum rate in a multiple-access system from [1] for small number of users. We suggest an improved signal-code construction in which in case of a small number of users we give more resources to them. For the resulting multiple-access system a lower bound on the relative sum rate is derived. It is shown to be very close to the maximal value of relative sum rate in [1] even for small number of users. The bound is obtained for the case of decoding by exhaustive search. We also suggest reduced-complexity decoding and compare the maximal number of users in this case and in case of decoding by exhaustive search.Comment: 5 pages, 4 figures, submitted to IEEE ISIT 201

    Optimal Threshold-Based Multi-Trial Error/Erasure Decoding with the Guruswami-Sudan Algorithm

    Full text link
    Traditionally, multi-trial error/erasure decoding of Reed-Solomon (RS) codes is based on Bounded Minimum Distance (BMD) decoders with an erasure option. Such decoders have error/erasure tradeoff factor L=2, which means that an error is twice as expensive as an erasure in terms of the code's minimum distance. The Guruswami-Sudan (GS) list decoder can be considered as state of the art in algebraic decoding of RS codes. Besides an erasure option, it allows to adjust L to values in the range 1<L<=2. Based on previous work, we provide formulae which allow to optimally (in terms of residual codeword error probability) exploit the erasure option of decoders with arbitrary L, if the decoder can be used z>=1 times. We show that BMD decoders with z_BMD decoding trials can result in lower residual codeword error probability than GS decoders with z_GS trials, if z_BMD is only slightly larger than z_GS. This is of practical interest since BMD decoders generally have lower computational complexity than GS decoders.Comment: Accepted for the 2011 IEEE International Symposium on Information Theory, St. Petersburg, Russia, July 31 - August 05, 2011. 5 pages, 2 figure

    Optimal Thresholds for GMD Decoding with (L+1)/L-extended Bounded Distance Decoders

    Full text link
    We investigate threshold-based multi-trial decoding of concatenated codes with an inner Maximum-Likelihood decoder and an outer error/erasure (L+1)/L-extended Bounded Distance decoder, i.e. a decoder which corrects e errors and t erasures if e(L+1)/L + t <= d - 1, where d is the minimum distance of the outer code and L is a positive integer. This is a generalization of Forney's GMD decoding, which was considered only for L = 1, i.e. outer Bounded Minimum Distance decoding. One important example for (L+1)/L-extended Bounded Distance decoders is decoding of L-Interleaved Reed-Solomon codes. Our main contribution is a threshold location formula, which allows to optimally erase unreliable inner decoding results, for a given number of decoding trials and parameter L. Thereby, the term optimal means that the residual codeword error probability of the concatenated code is minimized. We give an estimation of this probability for any number of decoding trials.Comment: Accepted for the 2010 IEEE International Symposium on Information Theory, Austin, TX, USA, June 13 - 18, 2010. 5 pages, 2 figure

    Upper and Lower Bounds on Bit-Error Rate for Convolutional Codes

    Full text link
    In this paper, we provide a new approach to the analytical estimation of the bit-error rate (BER) for convolutional codes for Viterbi decoding in the binary symmetric channel (BSC). The expressions we obtained for lower and upper BER bounds are based on the active distances of the code and their distance spectrum. The estimates are derived for convolutional codes with the rate R=12R=\frac{1}{2} but can be easily generalized for any convolutional code with rate R=1nR=\frac 1n and systematic encoder. The suggested approach is not computationally expensive for any crossover probability of BSC channel and convolutional code memory, and it allows to obtain precise estimates of BER

    Woven Graph Codes: Asymptotic Performances and Examples

    Full text link
    Constructions of woven graph codes based on constituent block and convolutional codes are studied. It is shown that within the random ensemble of such codes based on ss-partite, ss-uniform hypergraphs, where ss depends only on the code rate, there exist codes satisfying the Varshamov-Gilbert (VG) and the Costello lower bound on the minimum distance and the free distance, respectively. A connection between regular bipartite graphs and tailbiting codes is shown. Some examples of woven graph codes are presented. Among them an example of a rate Rwg=1/3R_{\rm wg}=1/3 woven graph code with dfree=32d_{\rm free}=32 based on Heawood's bipartite graph and containing n=7n=7 constituent rate Rc=2/3R^{c}=2/3 convolutional codes with overall constraint lengths νc=5\nu^{c}=5 is given. An encoding procedure for woven graph codes with complexity proportional to the number of constituent codes and their overall constraint length νc\nu^{c} is presented.Comment: Submitted to IEEE Trans. Inform. Theor

    Chained Gallager codes

    Get PDF
    The ensemble of regular Low-Density Parity-Check (LDPC) codes introduced by Gallager is considered. Using probabilistic arguments a lower bound on the normalized minimum distance is derived. A new code construction, called Chained Gallager codes, is introduced as the combination of two Gallager codes and its error correcting capabilities are studied

    Decoding Generalized Concatenated Codes Using Interleaved Reed-Solomon Codes

    Full text link
    Generalized Concatenated codes are a code construction consisting of a number of outer codes whose code symbols are protected by an inner code. As outer codes, we assume the most frequently used Reed-Solomon codes; as inner code, we assume some linear block code which can be decoded up to half its minimum distance. Decoding up to half the minimum distance of Generalized Concatenated codes is classically achieved by the Blokh-Zyablov-Dumer algorithm, which iteratively decodes by first using the inner decoder to get an estimate of the outer code words and then using an outer error/erasure decoder with a varying number of erasures determined by a set of pre-calculated thresholds. In this paper, a modified version of the Blokh-Zyablov-Dumer algorithm is proposed, which exploits the fact that a number of outer Reed-Solomon codes with average minimum distance d can be grouped into one single Interleaved Reed-Solomon code which can be decoded beyond d/2. This allows to skip a number of decoding iterations on the one hand and to reduce the complexity of each decoding iteration significantly - while maintaining the decoding performance - on the other.Comment: Proceedings of the 2008 IEEE International Symposium on Information Theory, Toronto, ON, Canada, July 6 - 11, 2008. 5 pages, 2 figure
    corecore